f5

Objective 4.02 Explain the purpose of the cryptographic services

Cryptographic Services

Public networks such as the Internet do not provide a means of secure communication between entities. Communication over such networks is susceptible to being read or even modified by unauthorized third parties. Cryptography helps protect data from being viewed, provides ways to detect whether data has been modified, and helps provide a secure means of communication over otherwise non secure channels. For example, data can be encrypted by using a cryptographic algorithm, transmitted in an encrypted state, and later decrypted by the intended party. If a third party intercepts the encrypted data, it will be difficult to decipher.

Signing

A digital signature is a mathematical scheme for demonstrating the authenticity of a digital message or document. A valid digital signature gives a recipient reason to believe that the message was created by a known sender, such that the sender cannot deny having sent the message (authentication and non-repudiation) and that the message was not altered in transit (integrity). Digital signatures are commonly used for software distribution, financial transactions, and in other cases where it is important to detect forgery or tampering.

Encryption

Encryption is the process of encoding messages (or information) in such a way that eavesdroppers or hackers cannot read it, but that authorized parties can.
Certificates and Certificate Chains

Private/Public Keys

Public-key encryption uses a private key that must be kept secret from unauthorized users and a public key that can be made public to anyone. The public key and the private key are mathematically linked; data that is encrypted with the public key can be decrypted only with the private key, and data that is signed with the private key can be verified only with the public key. The public key can be made available to anyone; it is used for encrypting data to be sent to the keeper of the private key. Public-key cryptographic algorithms are also known as asymmetric algorithms because one key is required to encrypt data, and another key is required to decrypt data. A basic cryptographic rule prohibits key reuse, and both keys should be unique for each communication session. However, in practice, asymmetric keys are generally long-lived.

Symmetric/Asymmetric encryption

There are two basic types of encryption schemes: Symmetric-key and public-key encryption(Asymmetric). In symmetric-key schemes, the encryption and decryption keys are the same. Thus communicating parties must agree on a secret key before they wish to communicate. In public-key schemes, the encryption key is published for anyone to use and encrypt messages. However, only the receiving party has access to the decryption key and is capable of reading the encrypted messages. Public-key encryption is a relatively recent invention: historically, all encryption schemes have been symmetric-key (also called private-key) schemes
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s